

Haptic Feedback Evaluation Kit Quick Start Guide

6

+44 (0) 1932 252 482 www.precisionmicrodrives.com enquiries@precisionmicrodrives.com

Haptic Feedback

1 Introduction

Welcome to the Haptic Feedback Evaluation Kit!

This Quick Start Guide will show you how to get up and running, whilst demonstrating the different modes of operation. There are also some useful references towards the end.

Learn more

Please read the full User Manual for complete information on technical details and advice for accessing the advanced features of the Haptic Feedback Evaluation Kit.

Additional Resources

Online at precisionmicrodrives.com/haptic-kit you can find a range of additional resources available, including:

- Downloadable PDF of this document
- Downloadable PDF of the full User Manual
- A4 printable posters for reference (Effect Table, True Haptics Menu Map, etc.)
- Tutorials on the advanced features
- Arduino code for different Modes of Operation and example applications
- Further resources as they are developed!

Further Development

Once you have experienced haptics with this kit, you may want to apply it to your own projects. We have an extensive range of vibration actuators that can be found on our website at precisionmicrodrives.com/vibration-motors and are available to purchase in our online shop. However, if you are unable to find what you are looking for or you need some support, our engineers are always happy to answer any questions. Please contact us using any of the methods shown below.

Contact Precision Microdrives

For questions about the Haptic Feedback Evaluation Kit, ordering and quotes, or technical queries please do not hesitate to get in touch:

+44 (0) 1932 252 482

www.precisionmicrodrives.com

enquiries@precisionmicrodrives.com

2 System Overview

The Haptic Feedback Evaluation Kit is comprised of two main hand-held units, the Haptic Controller and the Haptic Grip:

Haptic Feedback Evaluation Kit

Haptic Controller

Together, the Haptic Shield and the Arduino UNO R3 make up the Haptic Controller and act as the 'brains' of the system.

Arduino is an open source development platform for electronics, as a term it is colloquially use to describe the parent company, the product range, or a specific board. The UNO R3 is based on the Atmel ATmega328 microcontroller, its stackable headers enable the functionality to be extended by connecting customised boards, called 'shields', which mate with the Arduino.

The Precision Microdrives Haptic Shield is specially designed for haptic feedback, with capacitive touch buttons for input and a Texas Instruments DRV2605L haptic driver and MOSFET for vibration output.

Haptic Grip

The Haptic Grip houses 4 different vibration actuators to enable users to experience a range of haptic feedback and vibration alerting, including 3 ERMs (304-103, 306-109, 308-102) and the C10-100 LRA.

This makes it easy to compare haptic effects against each other and feel the effects independently of the Haptic Controller. It is designed to have a form factor that can represent a variety of end applications, such as hand held instruments or joystick interfaces.

A PDF reference is available at precisionmicrodrives.com/haptic-kit which lists key parameters of each motor included, with space for notes about other actuators you may use.

3 Setup & Installation

The Haptic Feedback Evaluation Kit arrives completely assembled with all hardware provided in the box. To start, simply connect the kit to one of the power sources outlined below.

Power

The Arduino allows you to supply power via the USB port or DC connector. You can use either option. However, please note that old versions of the Haptic Shield must be powered via USB only. If this Quick Start Guide was supplied with your kit, you have the new version and may proceed with your preferred choice. If you are reading this online, you should double check your version of the Haptic Shield by visiting precisionmicrodrives.com/ haptic-kit.

If using a USB port on a computer or laptop to power the unit you may be subject to current limiting on the USB port. You will need to install the Arduino drivers to correct this. When the actuators are vibrating the current draw can peak over 100mA. By installing the drivers the Arduino is able to negotiate up to 500 mA. Not installing the drivers risks limiting the current to the motors, thereby reducing the performance and in some cases not allowing the kit to start-up.

(In some computers, particularly laptops, several USB ports can use the same internal power supply. If possible, remove other USB devices that may be connected to the same line as the kit.)

Drivers and Software

Installing the drivers and software for the Arduino Uno R3 is simple, but they are updated periodically. Therefore it is best to get the latest version and instructions from the Arduino website (note URLs are case-sensitive):

- Navigate to arduino.cc/en/Main/Software or search 'Arduino software'
- Install the Arduino software, includes drivers and IDE (1.8.7 at time of release)
- Refer to the Getting Started page for more help arduino.cc/en/Guide/HomePage

Existing Arduino Users and Kit Owners

If you already have the Arduino IDE installed, we recommend ensuring you upgrade to the latest version. If you wish to continue using an older version, please visit precisionmicrodrives.com/haptic-kit for legacy support.

For owners of the Rev1 kit, please ensure you replace the libraries with the Rev2 versions. For full upgrade instructions, please visit precisionmicrodrives.com/haptic-kit.

4 Intro Mode

The Intro Mode firmware is loaded onto the Haptic Controller prior to shipping. After successfully completing the installation process and providing power, the kit will automatically start and the Precision Microdrives logo will appear on the OLED main screen.

Intro Mode serves as an introduction to haptic feedback and vibration alerting. This makes it perfect for those who are unfamiliar with haptics, or for demonstrating to colleagues the value of the features. Even if you are experienced with haptic feedback, you may wish to explore the tutorials to discover some of the additional features of the DRV2605L.

Develop Understanding

Each tutorial has several slides for you to read about the concepts demonstrated. They are easy to follow and you can go back by pressing the Left button, or exit with the Back button.

Feel Effects

At specific points in each tutorial you will be prompted to press the Play button. Different effects are played on the Haptic Grip or the Haptic Controller, you can repeat them by pressing the Play button a second time.

Apply

Not only will the tutorials walk you through the concepts of vibration alerting and haptic feedback, some also include example applications. Start thinking about how you would use haptics to improve your product, then try out the Engineering Mode.

5 Engineering Mode

The Engineering Mode uses different firmware that needs to be loaded into the Arduino, to perform this you will need to have installed the Arduino Environment (see Section 3) and have downloaded the code from precisionmicrodrives.com/haptic-kit. It gives access to a greater range of effects and functionality.

It is also recommended you read the Section 5 of the User Manual to get the most out of the Engineering Mode. The User Manual is available online at precisionmicrodrives.com/ haptic-kit.

Upload the Code

To enter the engineering mode, you need to compile and upload the code through the Arduino Environment. Downloaded and extract the code to your chosen folder, open the EngineeringMode.ino file (.ino files are called 'sketches'). Supporting files called 'libraries' are included in the zip, ensure the Sketchbook Location (File -> preferences) points to the folder above the libraries folder. If everything is correct you can click the 'upload' button. More detailed instructions available in the User Manual or at precisionmicrodrives.com/haptic-kit.

Using True Haptics

Here you can experience haptic feedback through the DRV2605 which includes 123 different haptic effects and 6 libraries. Navigate clicks, bumps, pulses, and many more options.

Press the Play button to play the chosen effect and press the PMD button to cycle actuators. The True Haptics Menu Map and Effect ID Table (Sections 9 and 10) will help you find effects quickly.

Using Vibration Alerting

Vibration alerts can be played through the on-board MOSFET and PWM. Build your own vibration alerting waveform by setting each variable in the Vibration Alerting section, including vibration power, vibration waveform, on time, and off time. Please note that LRAs require an AC signal, so cannot be played by the on-board MOSFET.

Keep Developing

Try using the DRV2605 library and example code to start prototyping your own system. The Arduino can be used to accept inputs, the library lets you easily interface with the DRV2605, and you can connect to an external actuator using the terminals on the Haptic Shield.

6 Development Mode

Having approached haptics with the Intro Mode and gained a more in depth idea of what our motors can do through using the Engineering mode, you may be thinking about how you can develop this into your own project.

The Development Mode has been created to allows designers to implement haptics using our Haptic feedback kit. You can download the firmware from precisionmicrodrives.com/ haptic-kit.

Modifying and uploading the code

All the software needed to run in our Haptic Kit is available on our website and users can deal in the Software without restriction, including without limitation, the rights to use, copy or modify it.

The Development Mode program is used to start writing your own code. It handles the initialisation of the pins, I²C bus, and the serial port. Advanced users will find the DRV2605 Arduino Library Reference useful, but those unfamiliar with Arduino programming may find the tutorials and examples more beneficial.

To upload the code in the kit, follow the same instructions as in the Engineering Mode. This will give you complete access to the open source code. The motors are driven using the driver DRV2605 from Texas Instrument. The Development Mode will allow you to program the driver and choose the setting that best suits your application and the PMD motor you are using. You can refer to Texas Instruments (TI) to understand the features of the driver and map of addresses.

You can connect an external actuator to the kit using the green screw terminal and program your own patterns, effects and recurrences. It is also worth noting that the OLED display is disabled in the Development Mode as it is designed to be very simple. This means that nothing will appear on it and the pins that were required to drive it are now available. The Pin Mapping in section 8 will help you identify which pins are free.

Tutorials and Examples

You will find on our website different tutorials and examples to follow with the Development Mode. Here is a few options for the users to continue investigating and developing new haptics applications.

1: How to connect an external motor to the Haptic Feedback Evaluation Kit

precisionmicrodrives.com/content/connecting-external-actuator-vibration-motor-to-the-m20-200-haptics-kit/

2: Driving multiple LRA's

precisionmicrodrives.com/content/new-haptic-feedback-evaluation-kit-tutorial-driving-multiple-lras/

3: Using the Audio-to-Vibe function

precisionmicrodrives.com/content/tutorial-using-haptic-feedback-with-music-or-audio-signals/

7 DRV2605 Library

The DRV2605 and DRV2605L from Texas Instruments are functionally similar, the DRV2605L is available in a 10VSSOP package and is used in the Haptic Feedback Evaluation Kit. However, you should be able to use the library with either chip. If you have any issues in Development Mode, please contact us.

Parent	Notes	Function Syntax		Description		Parameters	Retur	ms
10.00	1	selectMotor(motorID):		lefects the output mo external actuator	stor on the grip. Required even if using	motorID: uint8_t	Void	
		bCalibrated[]:		external actuator Checks to see if selected actuator has undergone calibration		None	Boolean True - ca Faise - n	Value alibrated not calibrated
		autoCalibrate();		turns auto calibration	on selected motor	None	Void	
	Recommended object:	playVibAlett(waveform , pwr , onTime , o	ffTime (:	Plays vibration alert o supported so motorit	n selected actuator, LRA is not 3 + 3	waveform: uint8_t pwr: uint8_t onTime: uint8_t offTime: uint8_t	Void	
11204 Vol 201	Motor motor = Motor[]: The Motor object encapsulates DRV2605 functionality and gives	n playfullHaptic(library , effect);		Plays haptic effect fro .RA is selected (moto	m DRV2605 on selected actuator. If r ID = 3] then library 6 must be used	library: uint8_t effect: uint8_t	Void	
Motor.cpp	vibration alerts and haptic effects	getMotorID();		Gets current motorID		None	Int	
	Only one should be instantiated a time, as demonstrated in the IntroMode and EngineeringMod sketchs	aPlaying[];		Checks to see if an ac	tuator is playing a haptic effect	None	Boolean True = pl Faise = n	i Value laying iot playing
		aPuyingVib():		Checks to see if an ac off times' return a tri	tuator is playing a vibration alert. Note ue value	None	Boolean True = pi Faise = n	Value laying tot playing
		stop//ib/liert();		mmediatly stops the	effect / vibration alert being played	None	Void	
		getMotorName():		Returns actuator prov	luct code	None	Char stri	ng
		isPlayingAudio():		Checks to see if DRV2	1605 is in Audio-to-Haptic mode	None	ine value	equal to 1 if in
		Audio2Haptic(withKeyPress):		Happic to Audio mod	e with calibration for motors	withKeyPress: bool	Void	
	Recommended object	autoCal[ratedVottage . overdriveClamp . compensation . backEMF . feedback]:	LRA.	Manually adjusts features in the DRV2605		ratedVoltage: uint8_t overdriveClamp: uint8_t LRA: boolean compensation: uint8_t* backEMP: uint8_t* feedback: unt8_t*	Boolean True = si False = n	Value uccessful not successful
DRV2605.cpp	the DAV/265 class abstracts away the DZ communications to the DBV/265 class, providing a streamlined interface for playing effects. Only are DBV/265 class should be instantiated. If using the DBV/2605 class that the day class use extern', as above	y playFulHaptic/library.effect.ratedVolta overdriveClamp.compensation.backEN e	ge . IF , feedback <u> </u> :	Plays haptic effect from DRV2005 on selected actuator. Manually adjusts the features in the DRV2005		Rbrary: unt8_t effect: unt8_t ratedVoltage: unt8_t overdriveClamp: unt8_t compensation: unt8_t backEMF: unt_8 feedback: unt8_t	Vaid	
		Audio LRA_AUDIO , ratedVoltage , over compensation , backEMF <u>}</u>	driveClamp .	Inters the Audio-to-F WM input pin, requi	LRA_AUDIO: uint8_t ratedVoltage: uint8_t overdriveClamp: uint8_t compensation: uint8_t backEMF. uint8_t	Waid		
debug.cpp	N/A	freeRAM():		Returns amount of u	nused RAM space in DRV2605	None	Ins	
Parameter	Type & Limits	/alues			Description			
motoriD	Osints3 0	= 304-103 1 = 306-109 2 = 308-10	3=010-1	00	Selects the output actuator			
waveform	0 s int s 3	= Square 1 = Sine 2 = Triangle	3 = Sawtoo	th .	Changes the output waveform for vi	bration alerts		
pwr	0≤int≤100 0	地 - 100%			Peak output strength of the selected	waveform		
onTime	0 ≤ int ≤ 255 1	enths of Seconds			Length of time the vibration alert vib	rates for		
offTim	0 s int s 255 7	enths of Seconds			Length of time between vibration al	erts		
library	l≤int≤6 1	- 5 for ERMs, 6 for LRAs			The haptic library on the DRV2605L	to be used		
effect	1 ≤ int ≤ 123 S	ee Effect ID table			The haptic effect on the DRV2605L t	o be used		
ratedVoltage	0 sints 255	oltage applied to ERM - ratedVoltage x 0/	02118		See full DRV2605L datasheet for LRA	voltage		
overdriveClan	up û≤int≤255 \	oltage applied to ERM = overdriveClamp x	0.02159		See full DRV2605L datasheet for LRA	A unitane		
LRA	bool 1	rue = LRA Mode, False = FRM Mode			Sets bit 7 of register 0x1A, setting DRV260SL in to URA or ERM mode			
Compensatio	n Osints255	Auto Calibration Compensation Coefficient = 1 + compensation / 255			Manually adjusts compensation for resistive losses in the driver			
backEMF	0 \$ int \$ 255	uto Calibration Back EMF (V) = (backEMF / 255) x (2.88 V / BEMFGain)			Manually adjusts results for back EMD of the actuator, BEMFGain is set by feedback			
feedback	int specific values only	//A	and a factor of a	Manually adjusts		dusts feedback control register, see full DRV2605L datasheet for details		
Register	Name	Datasheet Register		Register	Name	Name		Datashoot
0100	Status Register		00.34	0×15	Audio to Vibe Maximum Outo	ut Drive Register		00.41
0+01	Mode Register		00.35	0+16	Rated Voltage Desister	and a second second	-	na 41
0×02	Real-Time Planback losed	Register	00.36	0-17	Overdrive Clame Voltage Desi	uter.	-	00.42
0×03	Library Sciention	and Barren	00.36	0+18	Auto-Calibration Comparentia	n.Result Register	-	pg 10
0+04-000	Waveforem Seguences De	nistas	00.37	0×10	Auto-Calibration Dark-FAF Dar	ult Depirtur	-	00.42
0-05	Go Book tor	Ann.	Pg 37	0.14	Fordback Control Provide	on negator	-	Py 42
OxOC	Go Register	1000	pg 37	OXIA	Peedback Control Register		-	pg 43
0000	Overanve sime Offset Reg	pater .	pg 30	OXIB	Control i Register		-	P9 77
OXOE	Sustain Time Offset, Positi	ve register	pg 38	Oxic	Control 2 Register		-	pg 45
OXOF	Sustain Time Offset, Nega	tive Register	pg 39	OXID	Control3 Register		-	pg 48
0x10	Brake Time Offset Registe		pg 39	Ox1E	Control4 Register		-	pg 19
0x11	Audio to Vibe Control Re	gister	pg 40	0x1F	Control5 Register			pg 50
0x12	Audio-to-Vibe Minimum I	nput Level Register	Pg 40	0x20	LRA Open Loop Period Registe	ť		Pg 50
0+13	· · · · · · · · · · · · · · · · · · ·				the second se			
0415	Audio-to-Vibe Maximum I	nput Level Register	pg 40	0x21	Voltage Monitor Register			pg 51

8 Pin Mapping

Key of pin requirements

- OLED 3V3, 5V, GND, 5, 8 , 10, 11, 13
- Haptic Grip 5V, GND, A0, A1, 3, 4
- DRV2605 3V3, 5V, GND, A4, A5, 5, 7, 9
- Capacitive Touch 3V3, 5V. GND, A4, A5, 2
- ★ MOSFET 5V, GND, 4, 9

12C Addresses

USING 7 BITS ADDRESSING					
Capacitive Touch Driver MPR121	0x5D				
Haptic Driver DRV2605L	0x5A				

9 True Haptics Menu Map

Looking to find a specific effect in the True Haptics menu? You can use the reference below in conjunction with the Effect Table to find the menu location of each effect available on the DRV2605L.

Clicks			Ramps		
	Strong	1, 2, 3, 17, 18, 19, 20		Short	86, 110, 87, 111, 92, 116, 93, 117
Single	Medium	21, 22, 20	Up	Medium	84, 108, 85, 109, 90,
08.0	Tick	4, 5, 6, 24, 25, 26	<u>ор</u>		114, 91, 115
	Transition	58, 59, 60, 61, 62 ,63		Long	82, 106, 83, 107, 88, 112, 89, 113
	Strong	10, 11, 27, 28, 29, 30, 37, 38, 39, 40		Short	74, 98, 75, 99, 80, 104, 81, 105
Double	Medium	31, 32, 33, 41, 42, 43		Medium	72, 96, 73, 97, 78,
	Tick	34, 35, 36, 44, 45, 46	Down		102, 79, 103
Triple	Triple	12		Long	70, 94, 71, 95, 76, 100, 77, 101

	Oth	er	Alerts			
Buzzes	Buzzes	13, 14, 47, 48, 49, 50, 51, 118	Alerts	Alerts	5, 16	
			Library			
Bumps	Bumps	7, 8, 9	Library	Library	1, 2, 3, 4, 5	
	Pulses	52, 53, 54, 55, 56, 57	Audio2Haptics			
Pulses			Audio- 2Haptics	Audio- 2Haptics	Off, On	
	Hums		Shield Haptics			
Hums		69, 119, 120, 121, 122, 123	Shield Haptics	nield Shield ERM, LRA	ERM, LRA	

10 Effect Table

ID	Waveform	Menu	ID	Waveform	Menu
1	Strong Click 100%	Clicks > Single > Strong	63	Transition Click 6 10%	Clicks > Single > Transition
2	Strong Click 60%	Clicks > Single > Strong	64	Transition Hum 1 100%	Other > Hums
3	Strong Click 30%	Clicks > Single > Strong	65	Transition Hum 2 80%	Other > Hums
4	Sharp Click 100%	Clicks > Single > Tick	66	Transition Hum 3 60%	Other > Hums
5	Sharp Click 60%	Clicks > Single > Tick	67	Transition Hum 4 40%	Other > Hums
6	Sharp Click 30%	Clicks > Single > Tick	68	Transition Hum 5 20%	Other > Hums
7	Soft Bump 100%	Other > Bumps	69	Transition Hum 6 10%	Other > Hums
8	Soft Bump 60%	Other > Bumps	70	Transition Ramp Down Long Smooth 1 100-0%	Ramps > Down > Long
9	Soft Bump 30%	Other > Bumps	71	Transition Ramp Down Long Smooth 2 100-0%	Ramps > Down > Long
10	Double Click 100%	Clicks > Double > Strong	72	Transition Ramp Down Medium Smooth 1 100-0%	Ramps > Down > Medium
11	Double Click 80%	Clicks > Double > Strong	73	Transition Ramp Down Medium Smooth 2 100-0%	Ramps > Down > Medium
12	Soft Fuzz 60%	Clicks > Triple	74	Transition Ramp Down Short Smooth 7 100-0%	Ramps > Down > Strong
1.5	Strong Ruzz 100%	Other > Buzzes	75	Transition Ramp Down Long Sharp 1 100.0%	Ramps > Down > Long
14	750ms Alort	Other > Alorts	70	Transition Ramp Down Long Sharp 2 100-0%	
16	1000ms Alert	Other > Alerts	78	Transition Ramp Down Medium Sharp 1 100-0%	Ramps > Down > Medium
17	Strong Click 1 100%	Clicks > Single > Strong	79	Transition Ramp Down Medium Sharp 2 100-0%	Ramps > Down > Medium
18	Strong Click 2 80%	Clicks > Single > Strong	80	Transition Ramp Down Short Sharp 1 100-0%	Ramps > Down > Strong
19	Strong Click 3 60%	Clicks > Single > Strong	81	Transition Ramp Down Short Sharp 2 100-0%	Ramps > Down > Strong
20	Strong Click 4 30%	Clicks > Single > Strong	82	Transition Ramp Up Long Smooth 1 0-100%	Ramps > Up > Long
21	Medium Click 1 100%	Clicks > Single > Medium	83	Transition Ramp Up Long Smooth 2 0-100%	Ramps > Up > Long
22	Medium Click 2 80%	Clicks > Single > Medium	84	Transition Ramp Up Medium Smooth 1 0-100%	Ramps > Up > Medium
23	Medium Click 3 60%	- Clicks > Single > Medium	85	Transition Ramp Up Medium Smooth 2 0-100%	Ramps > Up > Medium
24	Sharp Tick 1 100%	Clicks > Single > Tick	86	Transition Ramp Up Short Smooth 1 0-100%	Ramps > Up > Short
25	Sharp Tick 2 80%	Clicks > Single > Tick	87	Transition Ramp UP Short Smooth 2 0-100%	Ramps > Up > Short
26	Sharp Tick 3 60%	Clicks > Single > Tick	88	Transition Ramp Up Long Sharp 1 0-100%	Ramps > Up > Long
27	Short Double Click Strong 1 100%	Clicks > Double > Strong	89	Transition Ramp Up Long Sharp 2 0-100%	Ramps > Up > Long
28	Short Double Click Strong 2 80%	Clicks > Double > Strong	90	Transition Ramp Up Medium Sharp 1 0-100%	Ramps > Up > Medium
29	Short Double Click Strong 3 60%	Clicks > Double > Strong	91	Transition Ramp Up Medium Sharp 2 0-100%	Ramps > Up > Medium
30	Short Double Click Strong 4 30%	Clicks > Double > Strong	92	Transition Ramp Up Short Sharp 1 0-100%	Ramps > Up > Short
31	Short Double Click Medium 100%	Clicks > Double > Medium	93	Transition Ramp Up Short Sharp 2 0-100%	Ramps > Up > Short
32	Short Double Click Medium 2 80%	Clicks > Double > Medium	94	Transition Ramp Down Long Smooth 1 50-0%	Ramps > Down > Long
33	Short Double Click Medium 3 60%	Clicks > Double > Medium	95	Transition Ramp Down Long Smooth 2 50-0%	Ramps > Down > Long
34	Short Double Sharp Tick 1 100%	Clicks > Double > Lick	96	Transition Ramp Down Medium Smooth 1 50-0%	Ramps > Down > Medium
35	Short Double Sharp Tick 2 80%	Clicks > Double > Tick	97	Transition Ramp Down Medium Smooth 2 50-0%	Ramps > Down > Medium
36	Short Double Sharp Tick 3 60%	Clicks > Double > Tick	98	Transition Ramp Down Short Smooth 1 50-0%	Ramps > Down > Strong
37	Long Double Sharp Click Strong 1 100%	Clicks > Double > Strong	100	Transition Ramp Down Short Smooth 2 50-0%	Ramps > Down > Strong
30	Long Double Sharp Click Strong 2 60%	Clicks > Double > Strong	100	Transition Ramp Down Long Sharp 1 50-070	Ramps > Down > Long
40	Long Double Sharp Click Strong 4 30%	Clicks > Double > Strong	101	Transition Ramp Down Medium Sharp 1 50.0%	Ramps > Down > Long
40	Long Double Sharp Click Medium 1	Clicks > Double > Medium	102	Transition Ramp Down Medium Sharp 2 50-0%	Ramps > Down > Medium
42	Long Double Sharp Click Medium 2 80%	Clicks > Double > Medium	104	Transition Ramp Down Short Sharp 1 50-0%	Ramps > Down > Strong
43	Long Double Sharp Click Medium 3 60%	Clicks > Double > Medium	105	Transition Ramp Down Short Sharp 2 50-0%	Ramps > Down > Strong
44	Long Double Sharp Tick 1 100%	Clicks > Double > Tick	106	Transition Ramp Up Long Smooth 1 0-50%	Ramps > Up > Long
45	Long Double Sharp Tick 2 80%	Clicks > Double > Tick	107	Transition Ramp Up Long Smooth 2 0-50%	Ramps > Up > Long
46	Long Double Sharp Tick 3 60%	Clicks > Double > Tick	108	Transition Ramp Up Medium Smooth 1 0-50%	Ramps > Up > Medium
47	Buzz 1 100%	Other > Buzzes	109	Transition Ramp Up Medium Smooth 2 0-50%	Ramps > Up > Medium
48	Buzz 2 80%	Other > Buzzes	110	Transition Ramp Up Short Smooth 1 0-50%	Ramps > Up > Short
49	Buzz 3 60%	Other > Buzzes	111	Transition Ramp Up Short Smooth 2 0-50%	Ramps > Up > Short
50	Buzz 4 40%	Other > Buzzes	112	Transition Ramp Up Long Sharp 1 0-50%	Ramps > Up > Long
51	Buzz 5 20%	Other > Buzzes	113	Transition Ramp Up Long Sharp 2 0-50%	Ramps > Up > Long
52	Pulsing Strong 1 100%	Other > Pulses	114	Transition Ramp Up Medium Sharp 1 0-50%	Ramps > Up > Medium
53	Pulsing Strong 2 80%	Other > Pulses	115	Transition Ramp Up Medium Sharp 2 0-50%	Ramps > Up > Medium
54	Pulsing Medium 1 100%	Other > Pulses	116	Transition Ramp Up Short Sharp 1 0-50%	Ramps > Up > Short
55	Pulsing Medium 2 60%	Other > Pulses	117	Transition Ramp Up Short Sharp 2 0-50%	Ramps > Up > Short
56	Pulsing Sharp 1 100%	Other > Pulses	118	Long Buzz for Programmatic Topping 100%	Other > Buzzes
5/	Puising Sharp 2 60%	Other > Pulses	119	Smooth Hum 40%	Other > Hums
50 50	Transition Click 2 90%	Clicks > Single > Transition	120	Smooth Hum 20%	Other > Hums
59 60	Transition Click 3 60%	Clicks > Single > Transition	121	Smooth Hum 20%	Other > Hums
61	Transition Click 4 40%	Clicks > Single > Transition	122	Smooth Hum 10%	Other > Hums
62	Transition Click 5 20%	Clicks > Single > Transition	123	Smooth hanf 1070	outer - Huma

Looking for the perfect design? We can help.

Precision Microdrives is an ISO 9001:2015 trusted designer and manufacturer of miniature, cost-effective, and well engineered motors and mechanisms. We are specialists in,

- <u>Trusted precision motor design</u>
- Flexible motor & mechanism manufacturing
- Dependable quality control & after-sales support
- Industry leading motor testing and validation

Our UK based motor design engineers, will support you through the complex process of specifying, developing, validating, and mass manufacturing, a custom motor or mechanism. The result? A part perfect for your application.

Delivered, 'On-Time & To Spec'.

SPEAK TO OUR DESIGN ENGINEERS TODAY

Email: enquiries@precisionmicrodrives.com Call: +44 (0) 1932 252 482

Design for application case studies

ENCAPSULATED VIBRATION MOTOR FOR A CPR TRAINING DUMMY

- Low volume, high value manufacturing
- Custom CNC machined enclosure
- Optimised haptic performance
- Custom PCB including EMI filters

PRECISION SPEED AND TORQUE CONTROLLED SERVO WITH INTEGRATED TUNABLE PID LOOP FOR SINGLE-USE SCIENTIFIC INSTRUMENT

- Medium volume, high value assembly
- Adapted control software including digital IO (to customer's specification)

CUSTOMISED PRECISION GEAR MOTOR WITH ROBUST OPTICAL ENCODER

- High volume production
- Application specific output shaft
- Rear motor shaft with noise resistant optical encoder
- Tailored motor performance curves