T: +44 (0) 1932 252 482



Order Cart

View Cart
  • DC Vibration (Haptic) Motors Banner

Haptic Feedback


Many products have to communicate with their owners, users and operators to function. For the last 100 years the main communication methods available have been audible or visual.

There are examples of this in almost every type of electrical equipment; computers beep when switched on, remote controls use LEDs to show a button has been pressed, and telephones ring. In many cases these notification methods are very effective, but there are many others where product functionality can be improved by augmenting our sense of hearing and sight with our sense of touch.

For example Electronic torque wrenches may be used in a noisy environment making the audible indicator ineffective, or in orientations where a visual indicator isn’t visible. In this example scenario, neither a buzzer nor an LED can be relied on to alert the operator of an event - e.g. the correct torque having been reached. Harnessing the operator’s sense of touch as a 3rd alerting method with controlled vibration is a practical and valuable solution.

  • A vibrating electronic torque wrench
  • A vibrating electronic torque wrench

Meanwhile, many every-day products are now being built with capacitive touch displays and interfaces. They’re cheaper to construct than control panels with discrete switches, and designers love the freedom to produce UI’s with unique shapes. But a big drawback is that capacitive interfaces offer no feedback that a ‘button’ has been pressed... there’s no longer a mechanical click or touch feeling of a switch being pushed. Haptics technology can simulate the feeling of pressing tactile switches.

Both vibration alerting and haptic feedback methods use eccentric rotating mass (ERM) vibration motors or linear resonant actuators (LRAs) to generate the touch sensations, but they are used in different ways.

Haptic Feedback in Detail

For a closer look at haptics, including how to add it to a device, see our our in-depth guide either step-by-step, or jumping to the chapter that interests you most. There are 5 different chapters taking you from an introduction and overview (with more explanation that the quick glance above), all the way through design advice, and finally helping you source the necessary components.

  • The Haptic Feedback Evaluation Kit

Check out all the additional resources for your Haptic Feedback Evaluation Kit. You'll find user manuals, additional documentation and resources, even tutorials with example applications.

If you don't own a kit, you can find lots of additional information about the features and see how it can be used. If you have any questions about if it is right for you, get in touch!

Integration Guide : Haptic Feedback & Vibration Alerting for Handheld Products

In the App. Notes section of our website we have a guide to adding haptics to a handheld product. The guide expands on some of the information below, and is a great reference or quick start guide for those interested in haptic technology. To view or download the guide, simply click the link below to be taken to the Integration Guide page:

Integration Guide : Haptic Feedback & Vibration Alerting for Handheld Products

  • Integration Guide : Haptic Feedback & Vibration Alerting for Handheld Products
  • Integration Guide : Haptic Feedback & Vibration Alerting for Handheld Products

Vibration Alerting Technology

Most notably, vibration is a standard feature in mobile phones as it takes advantage of the users sense of touch to relay information. Now in more and more products, designers are implementing similar vibrating communications to interact with the operator.

Vibration alerting is simpler and cheaper to implement than haptics as the system does not need to provide a great level of detail to the user, it simply needs to convey that an event has occurred.

Therefore the main considerations for design are the vibration amplitude and the power consumption. Vibration actuator ‘rise and lag’ times are not as important as with haptic feedback systems. We stock the widest range of vibrating motors available anywhere in the world, and many of our products are suitable for a range of vibration alerting applications, with a variety of vibration strengths and drive voltages.

  • Precision Haptic™ Motor & Custom Controller
  • Precision Hapticâ„¢ Motor & Custom Controller

Digital lines from application host processors can be used, or PWM signal control can also be used to altering the strength of vibration which may be desirable. Circuit-wise many vibration alerting methods can be implemented with a simple vibration motor drive circuit.

Vibration alerting became common place in mobile phones in the 1990s, and now can be found in a wide range of ubiquitous applications. Here are some examples:

  • Pagers,
  • Silent watches,
  • Healthy living bracelets,
  • Restaurants / cafes, hand held devices are given to customers which vibrate when their food is ready for collection,
  • Handheld medical instruments and industrial equipment user interfaces.


Tactile feedback and vibration alerting functions offer different levels of information they provide to the user at different costs. Vibration alerting indicates an event has occurred, while haptics uses more advanced techniques to convey more information or better simulates tactile swithes, through tactile feedback.

They are becoming popular in many new markets, with several haptics devices evolving from simpler vibration alerting models. The addition of haptic feedback or vibration alerting is a popular method for product differentiation and can help with a product’s competitive advantage.

Both technologies use similar actuators to mechanically produce the sense of touch, and Precision Microdrives offers the widest selection of both ERM and LRA vibration motors. Vibration feedback is easy to implement, whereas haptic feedback is more complex.

305-000 - 5mm Vibration Motor - 10mm Type 305-000
Precision Haptic
Dia.: 4.85 mm
Voltage: 1.3 V
Amplitude: 0.8 G
Min Ordr Qty: 1+
See Specs & Prices
306-109 - 6mm Vibration Motor - 12mm Type 306-109
Precision Haptic
Dia.: 6 mm
Voltage: 3 V
Amplitude: 3.5 G
Min Ordr Qty: 1+
See Specs & Prices
308-102 - 8mm Vibration Motor - 15mm Type 308-102
Precision Haptic
Dia.: 8 mm
Voltage: 4.5 V
Amplitude: 5.5 G
Min Ordr Qty: 1+
See Specs & Prices
C10-100 - 10mm Linear Resonant Actuator - 4mm Type C10-100
Precision Haptic
Dia.: 10 mm
Voltage: 2 V
Amplitude: 1.4 G
Min Ordr Qty: 1+
See Specs & Prices

Subscribe to our Monthly Technical Support Bulletin, via Email

  • 308-103 High Amplitude ERM Vibrating Motor
  • Product Release :: 308-103
  • New high amplitude eccentric rotating mass vibrating motor. Strongest sub-12mm vibration motor available!